Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran)

نویسندگان

  • Sasan Vafaei
  • Javad Soosani
  • Kamran Adeli
  • Hadi Fadaei
  • Hamed Naghavi
  • Tien Dat Pham
  • Dieu Tien Bui
چکیده

The main objective of this research is to investigate the potential combination of Sentinel-2A and ALOS-2 PALSAR-2 (Advanced Land Observing Satellite -2 Phased Array type L-band Synthetic Aperture Radar-2) imagery for improving the accuracy of the Aboveground Biomass (AGB) measurement. According to the current literature, this kind of investigation has rarely been conducted. The Hyrcanian forest area (Iran) is selected as the case study. For this purpose, a total of 149 sample plots for the study area were documented through fieldwork. Using the imagery, three datasets were generated including the Sentinel-2A dataset, the ALOS-2 PALSAR-2 dataset, and the combination of the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset (Sentinel-ALOS). Because the accuracy of the AGB estimation is dependent on the method used, in this research, four machine learning techniques were selected and compared, namely Random Forests (RF), Support Vector Regression (SVR), Multi-Layer Perceptron Neural Networks (MPL Neural Nets), and Gaussian Processes (GP). The performance of these AGB models was assessed using the coefficient of determination (R2), the root-mean-square error (RMSE), and the mean absolute error (MAE). The results showed that the AGB models derived from the combination of the Sentinel-2A and the ALOS-2 PALSAR-2 data had the highest accuracy, followed by models using the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset. Among the four machine learning models, the SVR model (R2 = 0.73, RMSE = 38.68, and MAE = 32.28) had the highest prediction accuracy, followed by the GP model (R2 = 0.69, RMSE = 40.11, and MAE = 33.69), the RF model (R2 = 0.62, RMSE = 43.13, and MAE = 35.83), and the MPL Neural Nets model (R2 = 0.44, RMSE = 64.33, and MAE = 53.74). Overall, the Sentinel-2A imagery provides a reasonable result while the ALOS-2 PALSAR-2 imagery provides a poor result of the forest AGB estimation. The combination of the Sentinel-2A imagery and the ALOS-2 PALSAR-2 imagery improved the estimation accuracy of AGB compared to that of the Sentinel-2A imagery only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Estimation of Above Ground Biomass Using Dual Polarimetric PALSAR and ETM+ Data in the Hyrcanian Mountain Forest (Iran)

The objective of this study is to develop models based on both optical and L-band Synthetic Aperture Radar (SAR) data for above ground dry biomass (hereafter AGB) estimation in mountain forests. We chose the site of the Loveh forest, a part of the Hyrcanian forest for which previous attempts to estimate AGB have proven difficult. Uncorrected ETM+ data allow a relatively poor AGB estimation, bec...

متن کامل

Estimating Forest Aboveground Biomass by Combining ALOS PALSAR and WorldView-2 Data: A Case Study at Purple Mountain National Park, Nanjing, China

Enhanced methods are required for mapping the forest aboveground biomass (AGB) over a large area in Chinese forests. This study attempted to develop an improved approach to retrieving biomass by combining PALSAR (Phased Array type L-band Synthetic Aperture Radar) and WorldView-2 data. A total of 33 variables with potential correlations with forest biomass were extracted from the above data. How...

متن کامل

The Penetration Depth Derived from the Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest Biomass

The Global Digital Elevation Model produced from stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer data (ASTER GDEM) covers land surfaces between latitudes of 83°N and 83°S. The Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard Advanced Land Observing Satellite (ALOS) collected many SAR images since it was launched on 24 January 2006. The combinati...

متن کامل

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity

The main objective of this paper is to investigate the effectiveness of two recently popular non-parametric models for aboveground biomass (AGB) retrieval from Synthetic Aperture Radar (SAR) L-band backscatter intensity and coherence images. An area in Siberian boreal forests was selected for this study. The results demonstrated that relatively high estimation accuracy can be obtained at a spat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018